

Duncan Carr
scan@btinternet.com
Believing that life has an underlying simplicity, and inspired by the myriad forms that DNA can create (using just four nucleotide bases, A, G, C \& T), I set out to build structures and create motion using just four building blocks. While this is in no way intended to mirror the complex chemistry of DNA, it makes it much easier to explain using this analogy. While DNA is a blueprint for proteins, I simply restrict myself to four different types of fundamental building blocks to simultaneously build the creature and to describe its motion.

In order to grow the underwater sea creature, I started off with a string of letters. I will refer to this as the creature's initial DNA: Any number of letters may be chosen, but, akin to DNA, the palette of options is restricted to R, L, F and B. The pattern I chose was:

FFFLFRLFRFFLL
Then it was necessary to create some rules, or replacements, for each of the four building blocks. These rules are used to update the string upon each iteration. These, too, are simple strings of DNA. In this instance I used:

$$
\begin{aligned}
\operatorname{rules}[" R "] & =\mathbf{L} \\
\operatorname{rules}[" L "] & =\mathbf{L B B} \\
\operatorname{rules}[" F "] & =\mathbf{B} \\
\operatorname{rules}[" B "] & =\mathbf{L}
\end{aligned}
$$

Now I need to "grow" the initial DNA using the rules. To do this I simply refer to the rule for the appropriate letter. The value of the rule contains the replacement string. In the first examples, the letters I am replacing are highlighted for clarity.

[^0]The replacement rule for ' F ' is ' B '. After replacement I get: BFFLFRLFRFFLL

Now I take the second letter, which is also an ' F ', and perform the same replacement of ' B ', as dictated by the rules. I now have:

BBFLFRLFRFFLL
Now I take the third letter, also ' F ', and do the same again:
BBBLFRLFRFFLL
The fourth letter is an 'L' - this has a replacement rule of 'LBB':
BBBLBBFRLFRFFLL
I carry on replacing each of the letters in turn with their replacements until I have dealt with each letter. By the time I have replaced all thirteen characters of our initial $D N A$ with the characters from the rules, I end up with (coloured, for clarity, from this point on):

BBBLBBBLLBBBLBBLBBLBB
I now have a string of twenty one characters, "grown" from the inital $D N A$ length of thirteen characters. In order to remain unambiguous I have shown how the DNA grows over the full 7 iterations.

I now substitute this new resulting $D N A$ string for the initial $D N A$ and start over, replacing each letter in turn with the existing replacement rules. Once I get to the last character of this string, I start over yet again. After 2 iterations I have a string of thirty three letters:
LLLLBBLLLLBBLBBLLLLBBLLLBBLLLBBLL
After 3 iterations, a resulting DNA of 75 characters:
LBBLBBLBBLBBLLLBBLBBLBBLBBLLLBBLLLBBLBBLBBLBBLLLBBLBB LBBLLLBBLBBLBBLLLBBLBB

After 4 iterations, a resulting $D N A$ of 141 characters:
LBBLLLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLLLBBLBBL BBLLLBBLBBLBBLLLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLB BLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLL

After 5 iterations, a resulting DNA of 291 characters:
LBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBL LLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBB LLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBB LBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLB BLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLL BBLLLBBLLLBBLBBLBBLLLBBLBB

After 6 iterations, a resulting DNA of 573 characters:
LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBB LBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBB LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBB LBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBB LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLB BLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLL LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLB BLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLL LBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLB BLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBLBB LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLL

After 7 iterations, a final output DNA of 1,155 characters:
LBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLB BLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBL LLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBL BBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBB LLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBB LBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLB BLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLB BLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLL BBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLL BBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLL BBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLL BBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLL LBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBL LLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBL LLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBL LLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBB LLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBB LLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLB BLLLBBLLLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLB BLLLBBLBBLBBLLLBBLBBLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBL BBLLLBBLLLBBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBBL BBLLLBBLBBLBBLLLBBLLLBBLLLBBLBBLBBLLLBBLBB

The result is a very simple pattern. As can be seen from this example, due to the replacement rules, I have ended up with only 2 constituent parts, 'L's and 'B's (as the replacement rules contained no ' F 's or 'R's).

As I intend to illustrate this resulting $D N A$ in pseudo three-dimensions, and/or in three-dimensions proper, I needed to restrict the number of primitives I will be creating. With a more powerful computer, or more efficient programming methodology, this could easily be iterated many more times, adding further realism to the result.

Illustrating the creature

I devised a very simple method to illustrate the resulting DNA. In a similar fashion to "growing" the DNA I pluck each character off, one by one, from the head of the string, and update our coordinates in three-dimensional space. I simply start off in the centre of our three-dimensional world, x, y and z all set to zero. I use variables $x p o s N e w, y p o s N e w$ and $z p o s N e w$ to keep track of the current position.

The letters simply denote a move in three-dimensional space to a new coordinate. The variable angle is initially set to zero, but is updated upon each iteration. The variable distance is simply the diameter of the spheres that ultimately make up the structure:
if letter is equal to R :

> xposNew $+=\cos ($ angle $*$ distance $)$ yposNew $+=\sin ($ angle $*$ distance $)$

(else)

if letter is equal to L :

> xposNew $-=\cos ($ angle $*$ distance $)$
> yposNew $-=\sin \left(\right.$ angle ${ }^{*}$ distance $)$
(else)
if letter is equal to F :

> xposNew $+=\cos ($ angle $*$ distance $)$
> yposNew $+=\sin ($ angle $*$ distance $)$
> zposNew $+=\cos ($ angle $*$ distance $)$
(else)
if letter is equal to B :

> xposNew $-=\cos ($ angle $*$ distance $)$
> yposNew $-=\sin ($ angle $*$ distance $)$
> zposNew $+=\cos ($ angle $*$ distance $)$

Note:

+= add result to current value
-= subtract result from current value

The increment for this structure and motion is 56.95122°. A modification of the increment of just $1 / 10,000^{\circ}$ (one tenthousandth of a degree) causes a vast change in its behaviour.

Upon each iteration, a modification of the angle, incremented by the value of the increment, is applied to each sphere that makes up the creature (the output DNA), and the structure morphs. Sometimes this produces a very unexpected result; in that occasionally the output DNA and the increment (in this case 56.95122°), seem to be in harmony with the one another, and a rich, natural, stentor-like structure and movement is revealed.
http://www.my-mot.co.uk/automata/

[^0]: I take the first letter of the initial $D N A$, which is an ' F ':

